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Executive Summary 

The utility of Digital Orthophoto Quads (DOQs) in assessing the classification accuracy of land cover 
derived from Landsat MSS data was investigated. Initially, the suitability of DOQs in distinguishing 
between different land cover classes was assessed using high-resolution airborne color video data. A cross-
tabulation of the analyst’s DOQ labels and the reference video label was produced and had an overall 
accuracy of 92%. This indicated that the DOQ data could be used to identify and distinguish between the 
different land cover classes. 

A 1992 land cover map for the Upper San Pedro Watershed was available for accuracy assessment. 
The map was interpreted and generated by Instituto del Medio Ambiente y el Desarrollo Sustentable del 
Estado de Sonora (IMADES), Hermosillo, Sonora. The Environmental Protection Agency (EPA) supplied 
Arizona Remote Sensing Center (ARSC) with approximately 60 DOQs for 1992. Most of the land cover 
classes were fairly well represented in the DOQs and covered between 24% and 41% in eight out of ten 
land cover classes. Only the Barren and Agriculture classes were poorly represented in the available DOQs 
covering 5.3% and 14.2% of the map area, respectively. 

A total of 457 sample points was used for the accuracy assessment. Allocation of sample points to land 
cover classes was through stratified (by land cover class area) random sampling, with a 20-sample 
minimum for the smallest classes. Map labels for the sample points were compared with reference DOQ 
labels and an error matrix generated. An overall classification accuracy of about 75% was obtained. 
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Section 1


A Review – Land Cover Accuracy Assessment


Land cover maps derived from remotely sensed data inevitably contain error of various types and 
degrees. It is therefore very important that the nature of these errors be determined, in order for both users 
and producers of the maps to be able to gauge their appropriateness for specific uses. In addition, 
identifying and correcting the sources of errors may increase the quality of map information. Classification 
accuracy assessment is necessary for comparing the performance of various classification techniques, 
algorithms, or interpreters (Congalton and Green, 1998). Classification accuracy assessment is now 
recognized as a critical component of any mapping project. 

Development of criteria and techniques for testing map accuracy began in the 1970s (Hord and 
Brooner, 1976; van Genderen and Lock, 1977; Ginevan, 1979). More in-depth studies and development of 
new techniques were initiated in the 1980s (Rosenfield et al., 1982; Congalton and Mead, 1983; Aronoff, 
1985). Today, the error matrix has become the standard medium for reporting the accuracy of maps 
derived from remotely sensed data (Congalton and Green, 1993). More recent research into classification 
accuracy assessment has focused on factors influencing the accuracy of spatial data, such as sampling 
scheme and sample size, classification scheme, and spatial autocorrelation (Congalton, 1991; Congalton 
and Green, 1993). Other important considerations in classification accuracy assessment include ground 
verification techniques, and evaluation of all sources of error in the spatial data set. 

The accuracy of a classified image refers to the extent to which it agrees with a set of reference data. 
Most quantitative methods to assess classification accuracy involve an error matrix built from the two data 
sets (i.e., remotely sensed map classification and the reference data). An error matrix is a square array of 
numbers set out in rows and columns which express the number of sample units assigned to a particular 
category relative to the actual category or as verified on the ground or typically large scale (at least 
1:12,000) color aerial photography (Congalton and Green, 1993). The columns normally represent the 
reference data, while the rows indicate the classification generated from the remotely sensed data. An error 
matrix is a very effective way to represent accuracy because the accuracy of each category is clearly 
described, along with both errors of inclusion (commission errors) and errors of exclusion (omission 
errors), as well as summary statistics for the entire matrix (Congalton et al., 1983; Congalton, 1991, Ma 
and Redmond, 1995). 

Overall map accuracy is computed by dividing the total correct (obtained by summing the major 
diagonal of the error matrix) by the total number of pixels in the error matrix. Accuracy of individual 
categories is computed by dividing the number of correct pixels in a category by either the total number of 
pixels in the corresponding row or the corresponding column (Congalton, 1991). When the number of 
correct pixels in a category is divided by the total number of pixels in the corresponding row (i.e., total 
number of pixels that were classified in that category), the result is an accuracy measure called “user’s 
accuracy,” and is a measure of commission error. “User’s accuracy” or reliability is indicative of the 
probability that a pixel classified on the map actually represents that category on the ground (Story and 
Congalton, 1986). On the other hand, when correct number of pixels in a category are divided by the total 
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number of pixels in the corresponding column (i.e., total number of pixels for that category in the reference 
data), the result is called “producer’s accuracy.” “Producer’s accuracy” indicates the probability of a 
reference pixel being correctly classified and is really a measure of omission error. 

An error matrix is an appropriate beginning for many analytical statistical techniques, especially 
discrete multivariate techniques. Discrete multivariate techniques are appropriate because remotely sensed 
data are discrete rather than continuous. The data are also binomially or multinomially distributed, and 
therefore, common normal theory statistical techniques do not apply (Jensen, 1996). 

KAPPA is a discrete multivariate technique developed by Cohen (1960) and has been utilized for land 
cover and land use accuracy assessment derived from remotely sensed data (Congalton et al., 1983; 
Rosenfield and Fitzpatrick-Lins, 1986; Gong and Howarth, 1990). The result of performing a KAPPA 
analysis is the KHAT statistic (an estimate of KAPPA) which is another measure of accuracy or 
agreement. Values of KAPPA greater than 0.75 indicate strong agreement beyond chance, values between 
0.40 and 0.79 indicate fair to good, and values below 0.40 indicate poor agreement (SPSS, 1998). Overall 
accuracy uses only the main diagonal elements of the error matrix, and, as such, it is a relatively simple and 
intuitive measure of agreement. On the other hand, because it does not take into account the proportion of 
agreement between data sets that is due to chance alone, it tends to overestimate classification accuracy 
(Congalton and Mead, 1983; Congalton et al., 1983; Rosenfield and Fitzpatrick-Lins, 1986; Ma and 
Redmond, 1995). KHAT accuracy has come into wide use because it attempts to control for chance 
agreement by incorporating the off-diagonal elements as a product of the row and column marginals of the 
error matrix (Cohen, 1960). 

The KAPPA coefficient is a powerful tool because of its ability to provide information about a single 
matrix and as a means to statistically compare matrices (Congalton, 1991). The Kappa coefficient serves 
as a more rigorous estimate of accuracy considering agreement that may be expected to occur by chance. 
Verbyla (1995) gives a formula for computing KHAT: 

^ Overall Classification Accuracy – Expected Classification Accuracy
K = 1 – Expected Classification Accuracy 

The expected classification accuracy is the accuracy expected based upon chance alone or the expected 
accuracy if we randomly assigned class values to each pixel. It can be calculated by first using the error 
matrix to produce a matrix of the products of row and column totals. The expected classification accuracy 
is then computed as the sum of the diagonal cell values divided by the sum of all cell values (Verbyla, 
1995). 

However, Foody (1992) has shown that, without modifications, KAPPA overestimates the proportion 
of agreement due to chance, and underestimates the overall classification accuracy. For this reason, Foody 
(1992) proposed the use of a modified KAPPA statistic for use with classifications based on equal 
probability of group membership that resembles and is derived more properly from the Tau coefficient. 
Kendall’s Tau is a measure of the association between two variables and is limited to the range [-1, +1]. A 
value near zero indicates that the values of one variable are uncorrelated with values of the other. 

In follow-up research to Foody’s findings, Ma and Redmond (1995) introduced the Tau coefficient, 
which measures the improvement of a classification over a random assignment of pixels to groups, and 
compared its performance to that of KAPPA and percentage agreement (overall accuracy). They found that 
Tau did better at adjusting percentage agreement than KAPPA, and that it was also easier to calculate and 

2




interpret. They therefore recommended the Tau statistic as a better measure of classification accuracy for 
use with remote sensing data than either KAPPA or percentage agreement. 

Other techniques for assessing the accuracy of remotely sensed data have been suggested. Aronoff 
(1985) suggested an approach based on the binomial distribution of data, which is very appropriate for 
remotely sensed data. This approach involves the use of a minimum accuracy value as an index of 
classification accuracy. The advantage of the index is that it expresses statistically the uncertainty involved 
in any accuracy assessment. The major disadvantage of the approach is that it is limited to a single overall 
accuracy value rather than using the entire error matrix. 

Analysis of variance is another technique for accuracy assessment suggested by Rosenfield (1981). 
However, violation of normal theory assumption and independence assumption when applying this 
technique to remotely sensed data has severely limited its application (Congalton, 1991). 
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Section 2


Sampling in Support of Accuracy Assessment


The overriding assumption in the entire classification accuracy assessment procedure is that the error 
matrix is indicative or representative of the entire area mapped from the remotely sensed data. For this 
reason, a proper sampling approach must be used in generating the error matrix on which all future 
analyses will be based (Congalton, 1988). Since a total enumeration of mapped areas for verification is 
impossible, sampling is the only means by which the accuracy of a land cover map can be derived. Using 
the wrong sampling design can be costly and yield poor results. 

Congalton and Green (1998) list four considerations that are critical to designing an accuracy 
assessment sample that is truly representative of the map, i.e., (1) statistical distribution of map 
information, (2) appropriateness of sampling unit, (3) number of samples to be collected, and (4) choice of 
sample units. Most statistics assume that the population to be sampled is continuous and normally 
distributed, and that samples selected will be independent. However, map information is discrete and 
frequently not normally distributed. Therefore, normal statistical techniques that assume continuous 
distribution may be inappropriate for map accuracy assessment. Spatial autocorrelation is also an 
important consideration in the formulation of a sampling design for map accuracy assessment. Spatial 
autocorrelation is said to occur when the presence, absence, or degree of a certain characteristic affects the 
presence, absence, or degree of the same characteristic in neighboring units (Cliff and Ord, 1973), thereby 
violating the assumption of sample independence. Campbell (1981) found this condition particularly 
important in map accuracy assessment when an error in a certain location was found to positively or 
negatively influence errors in surrounding locations. 

It is critical that reference data be collected using the same classification scheme as was used to create 
the land cover classification map. Classification schemes are a means of organizing spatial information in 
an orderly and logical fashion, and therefore fundamental to any mapping project. The classification 
scheme makes it possible for the map producer to characterize landscape features and for the user to 
readily recognize them. A classification scheme has two critical components: (1) a set of labels, and (2) a 
set of rules for assigning the labels (Congalton and Green, 1998). The number and complexity of the 
categories in the classification scheme strongly influence the time and effort needed to conduct the accuracy 
assessment. The classification scheme should be both mutually exclusive (i.e., each mapped area is one and 
only one category) and totally exhaustive (i.e., no area on the map can be left unlabeled). 

In order to obtain unbiased ground reference information to compare with the remote sensing 
classification map and fill the error matrix values, we need to determine the most appropriate (i.e., 
minimum) sample size acceptable for a valid statistical testing of accuracy of the land cover map. In 
addition, an appropriate sampling scheme must be used to locate the sample points. The binomial 
distribution or the normal approximation to the binomial distribution is recognized as the appropriate 
mathematical model to use for determining an adequate sample size for accuracy assessment (Hord and 
Brooner, 1976; Hay, 1979; Rosenfield and Melley, 1980; Fitzpatrick-Lins, 1981; Rosenfield, 1982). These 
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techniques are statistically sound for computing the overall accuracy of the classification or even the 
overall accuracy of a single category (Congalton and Green, 1998). 

The equation based on binomial probability theory that relates classification accuracy assessment 
sample size to overall classification accuracy and allowable error can be used to calculate the allowable 
error on the accuracy of each land cover map (van Genderen and Lock, 1977; Fitzpatrick-Lins, 1981, 
Marsh et al., 1994). The equation is: 

Z2pq
N = 

E2 

where, 
N = Number of samples 
p = Expected or calculated accuracy (in percentage) 
q = 100-p 
E = Allowable error 
Z = Standard normal deviate for the 95% two-tail confidence level (1.96) 

A decision needs to be made on the allowable error, E, in order to determine the minimum number of 
sample points necessary to achieve the error. Since we do not have an overall accuracy of any of the land 
cover maps, nor an allowable error, a decision has to be made on each. We begin by assuming an initial 
allowable error of 5% and an overall map accuracy of between 60% and 95%. We can now use the formula 
given above to determine the minimum number of sample points required to achieve this allowable error for 
maps whose accuracy ranges between 60% and 95%, at the 95% confidence level. The minimum number of 
sample points necessary to achieve an allowable error of 2.5% can also be calculated in a similar manner. 
Spatial autocorrelation will affect sample size and especially the sampling scheme to be used in map 
accuracy assessment because it violates the assumption of sample independence. Autocorrelation may be 
responsible for periodicity in data that could affect the results of any type of systematic sample (Congalton 
and Green, 1998). 

There are three important considerations in the design of a successful sampling scheme: (1) samples 
must be selected without bias, (2) choice of sampling scheme determines what further analysis can be 
carried out, and (3) the sampling scheme will determine the distribution of samples across the landscape, 
and in turn significantly affect the costs of the accuracy assessment (Congalton and Green, 1998). There 
are five common sampling schemes that have been applied for collecting reference data in map accuracy 
assessment: 

1. Simple random sampling, 
2. Systematic sampling, 
3. Stratified random sampling, 
4. Cluster sampling, 
5. Stratified systematic unaligned sampling. 

Many researchers have expressed divergent opinions about the proper sampling schemes to use. Berry 
and Baker (1968) recommended systematic sampling design as the most efficient when used to assess the 
accuracy of land use data where geographic autocorrelation was known to decline monotonically with 
increased distance. However, they concluded that stratified systematic unaligned sampling yielded both the 
greatest relative efficiency and safety to estimation procedures, where the shape of the autocorrelation 
function was unknown. Stratified systematic unaligned sampling attempts to combine the advantages of 
randomness and stratification with the ease of a systematic sample without falling into the pitfalls of 
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periodicity common to systematic sampling. This method is a combined approach that introduces more 
randomness than just a random start within each stratum (Congalton and Green, 1998). Several other 
researchers have supported the use of stratified systematic unaligned sampling (Ayeni, 1982; Mailing, 
1989). Campbell (1987) recommended stratified systematic unaligned sampling in situations where the 
analyst knew enough about the region to make a good choice of grid size. Rosenfield and Melley (1980) 
and Rosenfield et al. (1982) recommended stratified systematic unaligned sampling, with augmentation of 
the sample by addition of randomly selected pixels in rare map categories to bring the sample sizes in these 
categories up to some minimum number. 

Van Genderen et al. (1978) concluded that stratified random sampling techniques were readily 
accepted as the most appropriate method of sampling in resource studies using remote sensing imagery, 
because important minor categories could be satisfactorily represented. Several studies conducted earlier by 
Rudd (1971) and Zonneveld, (1974) had also come to the same conclusion. In one of the few empirical 
studies specifically addressing sampling in remote sensing, Congalton (1988) conducted a simulation study 
of three populations by comparing five sampling schemes: simple random, stratified random, cluster, 
systematic and stratified systematic unaligned sampling. He found that simple random sampling without 
replacement always provided adequate estimates of the population parameters, provided the sample size 
was sufficient. However, he found that random sampling may under-sample small but possibly very 
important classes unless the sample size was sufficiently large. For the less spatially complex agriculture 
and range areas, systematic sampling and stratified systematic unaligned sampling greatly overestimated 
the population parameters. For this reason, Congalton (1988) recommended that systematic or stratified 
systematic unaligned sampling be used with great caution as they tend to overestimate the population 
parameters. In systematic designs, an unbiased estimator of sampling variance is unavailable and so 
variance has to be estimated by treating the systematic sample as a simple random sample. It is because of 
the reasons outlined above that most analysts prefer stratified random sampling (Jensen, 1996). However, 
stratified random sampling can only be carried out after the map has been completed (i.e., when location of 
strata is known). This rules out the possibility of simultaneously collecting sample data with training data, 
thereby potentially increasing project cost. Stratified random sampling can also be a problem if carried out 
long after the classification map was prepared since there may be temporal changes. 
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Section 3 

Classification Accuracy Assessment Sampling Design for 
the San Pedro Watershed 

A 1992 land cover map for the Upper San Pedro Watershed (Figure 1) was available for classification 
accuracy assessment. The digital map was interpreted and generated from a 2 June 1992 North American 
Landscape Characterization (NALC) Landsat Multi-Spectral Scanner (MSS) image by Instituto del Medio 
Ambiente y el Desarrollo Sustentable del Estado de Sonora (IMADES), Hermosillo, Sonora. The NALC 
project is a component of the National Aeronautics and Space Administration (NASA) Landsat Pathfinder 
Program (US-EPA, 1993). The goals of the NALC project are to produce standardized data sets for the 
majority of the North American continent. The purpose of the project was to develop standard data analysis 
methods to perform inventories of land cover, quantify land cover change analyses, and produce digital data 
base products for the U.S. and international global change research programs. A specific objective of the 
NALC project has been the assembly of three-date georeferenced data sets, called triplicates, for the U.S. 
Global Change Research Program (GCRP) and retrospective evaluations of change. A set of these NALC 
triplicates has been generated for the San Pedro Watershed and evaluated for change detection (Kepner et 
al., 2000). 

The Environmental Protection Agency (EPA) supplied the Arizona Remote Sensing Center (ARSC, 
University of Arizona) with 60 Digital Orthophoto Quadrants (DOQs) for 1992. Most of the land cover 
classes (Table 1) were fairly well represented in the DOQs and covered between 24% and 41% in eight out 
of ten land cover classes. Only the Barren and Agriculture classes were poorly represented in the available 
DOQs covering 5.3% and 14.2% of the map area, respectively. 

The available DOQs were black and white and at a scale of approximately 1:24,000. The 
recommended reference data for classification accuracy assessment, when ground truth data is unavailable, 
is large scale (1:12,000 or larger) color aerial photography (Congalton and Green, 1993). Since the DOQ 
data did not meet this criterion, we felt there was a need to use other high-resolution data to determine its 
suitability for conducting the classification accuracy assessment. We had high resolution airborne color 
video (at a scale of 1:200 when displayed on a 13-inch monitor) for a subset of the Upper San Pedro River 
Watershed in the U.S. This video data was acquired in November 1995. Full-zoom video frames (n = 
557) with a swath width of 50 m were selected systematically from continuously recorded video over a grid 
of flight lines. These points had been interpreted and each assigned a cover class based on the Brown, 
Lowe and Pase system (Brown, 1982). In addition, an estimate of the canopy cover and plant density of 
species or groups of species present was also made for each analyzed frame. These points represent six of 
the ten land cover classes in the NALC data sets. The only classes not included in the 557-video frames 
were (1) agriculture, (2) water, (3) barren, and (4) urban. Fortunately, these classes are clearly the easiest 
to identify in the DOQ data. 

We then used the airborne video data to perform an accuracy assessment of our ability to recognize and 
identify the six vegetation classes (forest, oak woodland, mesquite woodland, grassland, desertscrub, and 
riparian) on the DOQ data. We also produced a complete report on the performance of these data for 
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identification of the six vegetation classes. Conversion of the Brown, Lowe and Pase class video labels to 
the IMADES land cover classification scheme and video registration issues are described in more detail in 
Section 4. Both producer’s and user’s accuracy of individual land cover classes was computed, in addition 
to overall accuracy, Kappa and Tau statistics. 

Figure 1. Location of the Upper San Pedro River Basin, Arizona/Sonora (Adapted from 
Kepner et al., 2000). 
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Table 1. Land cover class descriptions for the Upper San Pedro Watershed (Adapted from 
Kepner et al., 2000) 

Forest Vegetative communities comprised principally of trees potentially over 10 m in height 
and frequently characterized by closed or multilayered canopies. Species in this 
category are evergreen (with the exception of aspen), largely coniferous (e.g., 
ponderosa pine, pinyon pine), and restricted to the upper elevations of mountains that 
arise off the desert floor. 

Oak 
Woodland 

Vegetative communities dominated by evergreen trees (Quercus spp.) with a mean 
height usually between 6 and 15 m. Tree canopy is usually open or interrupted and 
singularly layered. This cover type often grades into forests at its upper boundary and 
into semiarid grassland below. 

Mesquite 
Woodland 

Vegetative communities dominated by leguminous trees whose crowns cover 15% or 
more of the ground often resulting in dense thickets. Historically maintained 
maximum development on alluvium of old dissected flood plains; now present without 
proximity to major watercourses. Winter deciduous and generally found at elevations 
below 1,200 m. 

Grassland Vegetative communities dominated by perennial and annual grasses with occasional 
herbaceous species present. Generally grass height is under 1 m and they occur at 
elevations between 1,100 and 1,700 m; sometimes as high as 1,900 m. This is a 
landscape largely dominated by perennial bunch grasses separated by intervening 
bare ground or low-growing sod grasses and annual grasses with a less-interrupted 
canopy. Semiarid grasslands are mostly positioned in elevation between evergreen 
woodland above and desertscrub below. 

Desertscrub Vegetative communities comprised of short shrubs with sparse foliage and small cacti 
that occur between 700 and 1,500 m in elevation. Within the San Pedro River basin 
this community is often dominated by one of at least three species, i.e., creosotebush, 
tarbush, and whitethorn acacia. Individual plants are often separated by significant 
areas of barren ground devoid of perennial vegetation. Many desertscrub species are 
drought-deciduous. 

Riparian Vegetative communities adjacent to perennial and intermittent stream reaches. Trees 
can potentially exceed an overstory height of 10 m and are frequently characterized 
by closed or multilayered canopies depending on regeneration. Species within the 
San Pedro basin are largely dominated by two species, i.e., cottonwood and Goodding 
willow. Riparian species are largely winter deciduous. 

Agriculture Crops actively cultivated (and irrigated). In the San Pedro River basin these are 
primarily found along the upper terraces of the riparian corridor and are dominated by 
hay and alfalfa. They are minimally represented in overall extent (less than 3%) 
within the basin and are irrigated by ground and pivot-sprinkler systems. 

Urban 
(Low and 
High Density) 

This is a land-use dominated by small ejidos (farming villages or communes), 
retirement homes, or residential neighborhoods (Sierra Vista). Heavy industry is 
represented by a single open-pit copper mining district near the headwaters of the San 
Pedro River near Cananea, Sonora (Mexico). 

Water Sparse freestanding water is available in the watershed. This category would be 
mostly represented by perennial reaches of the San Pedro and Babocomari rivers with 
some attached pools or repressos (earthen reservoirs), tailings ponds near Cananea, 
ponds near recreational sites such as parks and golf courses, and sewage treatment 
ponds east of the city of Sierra Vista, Arizona. 

Barren A cover class represented by large rock outcropping or active and abandoned mines 
(including tailings) that are largely absent of aboveground vegetation. 
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Before we began our accuracy assessment, we needed to determine the minimum number of sample 
points required so that our calculated classification accuracy would have an allowable error of 5% or less 
at the 95% confidence interval. Since the overall accuracy of the land cover map was unknown at this 
time, we needed to assume that it fell within a certain range in order to be able to calculate the minimum 
number of sample points required to achieve the specified allowable error. For this calculation, we 
assumed that the overall accuracy of the land cover map was between 60% and 95%. This assumption was 
based on frequently reported accuracy’s of land cover maps derived from satellite data (e.g., Jensen et al., 
1993; Marsh et al., 1994; Dimyati et al., 1996; Miguel-Ayanz and Biging, 1997; Ramsey et al., 1997). 
Using the equation based on binomial probability theory (van Genderen and Lock, 1977; Fitzpatrick-Lins, 
1981, Marsh et al., 1994), we calculated the minimum number of sample points for a range of accuracy’s, 
and allowable errors of 5% and 2.5% at the 95% confidence interval. The results are summarized in Table 
2. 

Table 2. Minimum number of sample points, N1 and N2, required 
to achieve an allowable error of 5% (E1) and 2.5% (E2), 
respectively, at the 95% confidence interval and for 
accuracies ranging from 60% to 95% 

N1 N2 Z2 p Q E1 
2 E2 

2 

369 1475 3.8416 60.00 40.00 25 6.25 

360 1441 3.8416 62.50 37.50 25 6.25 

350 1398 3.8416 65.00 35.00 25 6.25 

337 1348 3.8416 67.50 32.50 25 6.25 

323 1291 3.8416 70.00 30.00 25 6.25 

306 1225 3.8416 72.50 27.50 25 6.25 

288 1152 3.8416 75.00 25.00 25 6.25 

268 1072 3.8416 77.50 22.50 25 6.25 

246 983 3.8416 80.00 20.00 25 6.25 

222 887 3.8416 82.50 17.50 25 6.25 

196 784 3.8416 85.00 15.00 25 6.25 

168 672 3.8416 87.50 12.50 25 6.25 

138 553 3.8416 90.00 10.00 25 6.25 

107 426 3.8416 92.50 7.50 25 6.25 

73 292 3.8416 95.00 5.00 25 6.25 

We then decided to use the lowest expected land cover map accuracy (60%) in determining the 
minimum number of sample points (~ 370) for the accuracy assessments. If the map accuracy eventually 
turned out to be higher than this value, this would result in a smaller allowable error (less than 5%) around 
our estimates at the 95% confidence interval. 

Based on the literature review described in Section 2, we concluded that a stratified random sampling 
design was the most appropriate for the land cover accuracy assessment. Apportionment of the sample 
points to the different land cover categories is shown in Table 3. However, because the area covered by 
some of the smaller land cover classes is negligible compared to the rest of the classes, these classes were 
not apportioned a sufficient number of sample points. If sample size within a stratum is too small, chances 
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are that even if the classification is poor we could not sample any classification errors (Miguel-Ayanz and 
Biging, 1997). In such situations, van Genderen and Lock (1977) suggested that the smallest sample in this 
class should be 20 or 30 for maps in which the admissible percentage errors are 15% and 10%, 
respectively. For this reason, we set 20 as the minimum number of sample points for any class, therefore 
increasing our total number of sample points from 370 to 457. 

Table 3. Minimum number of sample points per land cover class stratified by area 

Land cover Area (Ha) 
Proportion 
of Area (%) 

Estimated 
Samples 

Final Number 
of Samples 

Forest 7385.76 0.98 4 20 

Woodland Oak 93663.36 12.42 46 46 

Woodland Mesquite 106766.64 14.15 52 52 

Grassland 255024.00 33.81 125 125 

Desertscrub 232583.40 30.84 114 114 

Riparian 5918.04 0.78 3 20 

Agriculture 20991.60 2.78 10 20 

Urban 24492.24 3.25 12 20 

Water 310.68 0.04 0 20 

Barren 7139.52 0.95 4 20 

Total 754275.24 100.00 370 457 

For each sample point, the land cover category on the map was noted and entered in the “map” column 
of a spreadsheet, while the interpreted class on the photo was entered in a “reference” column. This 
spreadsheet was then used to generate an error matrix in SYSTAT and used to compute the accuracy of 
each category, along with both commission and omission errors. In addition, summary statistics for the 
matrix as a whole (overall classification accuracy, Kappa and Tau statistics) were calculated. 
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Section 4


Methods


DOQs were used to conduct a classification accuracy assessment of the 1992 land cover map. These 
photos were acquired in 1992 and were therefore current with the land cover map. However, because of 
the relatively coarse resolution of the DOQs (approximately 1:25,000), it would have been difficult to use 
them to distinguish between some of the vegetation communities without access to some other higher 
resolution data. We therefore used high-resolution airborne color video data to help associate subtle 
changes in shape, texture, or configuration in the DOQs to specific land cover types. This video data was 
acquired in November 1995 and was at a scale of approximately 1:200. This exercise constituted the 
training of the analyst in order to be able to distinguish between the different land cover types on the 
DOQs. 

Each video-frame had associated GPS coordinates obtained using a Trimble Basic Receiver at the time 
of video-frame acquisition. Although the nominal accuracy of the GPS receiver is 100 m, ground sampling 
revealed that the accuracy was much closer to 20 m (S. Drake, Personal Communication, 1999). There 
were 557 full-zoom video frames (each frame had a swath width of 50 m) that had been selected 
systematically from continuously recorded video over a grid of flight lines, but only 105 were coincident 
with the available DOQs used in the accuracy assessment. Each full-zoom video frame had previously 
been interpreted (with detailed information on percentage cover by species and by land cover) and a land 
cover class based on the Brown, Lowe and Pase System (Brown, 1982) assigned. We then re-interpreted 
the detailed land cover classes based on this system and aggregated them into one of the ten land cover 
classes used in the San Pedro Watershed mapping. This was one of the most challenging parts of the 
exercise and required an understanding of the criteria used in the San Pedro Watershed mapping by 
IMADES. We needed to understand the characteristics and thresholds used by IMADES to assign land 
cover classes. To help understand these criteria better, a team from both IMADES and ARSC met in the 
San Pedro Watershed where the former explained their mapping criteria. Typical vegetation classes such 
as mesquite woodland, desertscrub, oak woodland, and grassland sites were visited and GPS coordinates 
obtained. In addition, mixed sites that represented various thresholds between land cover classes were 
visited and GPS coordinates acquired. These sites were later located in available DOQs and compared to 
similar classes that were both on the DOQs and the video frames. 

All land cover classes in the San Pedro Watershed maps were represented in the 105 full-zoom video 
frames except for agriculture, urban, water and barren classes. The forest and riparian forest classes 
though present in both the video and DOQs were greatly underrepresented with only one sample each. 
Fortunately, these absent or underrepresented classes in both the video and DOQs were relatively easy to 
identify and distinguish in the DOQs. 

Since each full-zoom video frame included detailed information on location (GPS coordinates), species 
composition, and percent land cover, it was possible to locate the corresponding sites on the DOQs. By 
coupling prior field experience with information derived from the full-zoom video frames (each covering an 
area approximately 50 m × 50 m) in conjunction with DOQs, the analyst was able to quickly and 
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confidently develop the knowledge base to recognize each land cover class on the DOQs. Some of the 
classes were easily identifiable in the DOQs but others such as desertscrub, woodland mesquite, and 
grassland required considerable training. Figure 2 shows DOQ chips that are ‘typical’ examples of some 
of the land cover classes. Each chip has been extracted from a DOQ and represents a 3-pixel × 3-pixel 
area on a Landsat MSS scene, i.e., 180 m × 180 m area on a DOQ. 

Figure 2. Appearance of some land cover classes on 
1992 digital orthophoto quadrangles. 
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A randomized set of full-zoom video frame locations that correspond to available DOQ coverage was 
evaluated. The analyst then identified in the DOQs the land cover classes associated with each video frame 
location. Since the ‘revised’ class label for each video location was known, it was possible to determine 
how reliably the DOQ data could be used to identify the vegetation cover classes. A cross-tabulation of the 
analyst’s DOQ labels and the ‘reference’ video labels were performed in SYSTAT (SPSS, 1998). One 
limitation in this analysis was the small number of samples for some of the land cover classes but this was 
not seen as a great problem because the missing classes were those easiest to identify. The result of this 
assessment (Table 4) is a measure of the analyst’s ability to identify the land cover classes. 

These results indicated that the DOQ data could be used to identify and distinguish between these 
vegetation land cover classes. 

Table 4.	 Error matrix illustrating the analyst’s ability to use the 1992 DOQs for land 
cover classification accuracy assessment. A summary of classification errors 
is appended below 

Airborne Color Infrared Video (1995) 

D
ig

it
al

 O
rt

h
o

p
h

o
to

Q
u

ad
ra

n
g

le
s 

(1
99

2) 1 2 3 4 5 6 Grand Total 

1 1 0 0 0 0 0 1 

2 0 20 0 0 0 0 20 
3 0 0 10 1 1 0 12 

4 0 0 2 38 0 0 40 
5 0 0 1 2 28 0 31 

6 0 0 0 0 0 1 1 

Grand Total: 1 20 13 41 29 1 105 

Land Cover Class 
1992 
DOQs 

1995 
Video 

Number 
Correct 

Producer's 
Accuracy (%) 

User's 
Accuracy (%) 

1. Forest 1 1 1 100.00 100.00 

2. Woodland Oak 20 20 20 100.00 100.00 
3. Woodland Mesquite 12 13 10 76.92 83.33 

4. Grassland 40 41 38 92.68 95.00 
5. Desertscrub 31 29 28 96.55 90.32 

6. Riparian Forest 1 1 1 100.00 100.00 

Total: 105 105 97 

Overall Accuracy (%): 92.381 Coefficient Value Standard Error 

Kendall's Tau-B 0.912 0.039 

Cohen's Kappa 0.907 0.034 
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Section 5


Accuracy Assessment of the 1992 Land Cover Map


In Section 2 of this report we indicated that at least 370 sample points were required for the 
classification accuracy assessment. These samples would be sufficient to result in an allowable error that 
would be within 5% of the estimated accuracy at the 95% confidence level, assuming an overall map 
accuracy of at least 60%. The sample size was increased to 457 so that after stratification by area, each 
land cover class would have at least 20 samples. 

Generation of sample points was performed in ERDAS IMAGINE (ERDAS, 1998) and relied on a 
window majority rule. In generating each stratified random sample point, a window kernel of 
3 × 3 pixels moved across each land cover class and would result in selection of a sample point only if a 
clear majority threshold of six pixels out of nine in the window belonged to the same class. If this majority 
threshold rule was not satisfied, that window would be discarded (ERDAS, 1998) and the kernel would 
move to a different window. Generation of sample points in this manner ensured that the points were 
extracted from areas of relatively homogenous land cover class. It is also for this reason that we used a 
180 m × 180 m DOQ sample size as it would be equivalent to a 3 × 3 - pixel window on the map. 

A total of 457 points was used for the assessment with stratification by land cover area. The error 
matrix showing producer’s and user’s, and overall classification accuracy, and including the Kappa and 
Tau coefficients is shown in Table 5. 

Table 5. Classification accuracy error matrix for the 1992 land cover map using 1992 DOQs 

Reference (Digital Orthophoto Quads) 

1 2 3 4 5 6 7 8 9 10 Grand Total 

L
an

d
 C

o
ve

r 
C

la
ss

es
 1

99
2 1 22 2 0 0 0 0 0 0 0 0 24 

2 0 44 0 3 1 0 0 0 0 0 48 
3 0 2 40 9 10 1 0 0 0 0 62 
4 0 6 12 68 17 0 0 0 0 0 103 
5 0 1 8 11 89 0 0 0 0 0 109 
6 0 0 0 0 0 20 3 0 0 0 23 
7 0 0 1 0 0 4 18 0 0 0 23 
8 0 0 2 1 10 0 1 11 0 0 25 
9 0 0 1 0 0 0 0 0 19 0 20 

10 0 0 0 7 2 0 0 0 0 11 20 
Grand 
Total: 22 55 64 99 129 25 22 11 19 11 457 
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Table 5 (Continued) 

Land Cover Class 
92_Map 

Total 
DOQ 
Total 

Number 
Correct 

Producer's 
Accuracy (%) 

User's Accuracy 
(%) 

1. Forest 24 22 22 100.00 91.67 

2. Woodland Oak 48 55 44 80.00 91.67 
3. Woodland Mesquite 62 64 40 62.50 64.52 

4. Grassland 103 99 68 68.69 66.02 
5. Desertscrub 109 129 89 68.99 81.65 

6. Riparian Forest 23 25 20 80.00 86.96 
7. Agriculture 23 22 18 81.82 78.26 

8. Urban 25 11 11 100.00 44.00 
9. Water 20 19 19 100.00 95.00 

10. Barren 20 11 11 100.00 55.00 

Total: 457 457 342 

Overall Accuracy (%): 74.836 ± 3.979 Coefficient Value Standard Error 

Kendall's Tau-B 0.770 0.025 

Cohen's Kappa 0.701 0.025 

An overall accuracy of about 75% was obtained. Although the producer’s accuracy for the urban and 
barren classes is 100%, the user’s accuracy is only 44%, and 55%, respectively. This means that, all the 
urban and barren class pixels examined in the DOQs were also labeled as urban and barren classes in the 
1992 map. However, there were many more pixels in the map labeled ‘urban’ and ‘barren’ that turned out 
to be some other class in the DOQs. Indeed, only 44% of all pixels labeled urban in the 1992 turned out to 
be urban while 55% of map pixels labeled barren turned out to be ‘barren’ in the DOQs. 
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Conclusions 

The results discussed in this report indicate that DOQ data when used together with higher resolution 
data can be successfully used to perform classification accuracy assessment on land cover maps derived 
from historical satellite data. It is essential that geometric rectification between digital maps being assessed 
and the DOQs be equal (Appendix 1). It is expected that newer DOQs will be even more effective for 
accuracy assessment because of their multispectral characteristics. Because DOQs are already 
georeferenced, they could be used to georeference other historical photography for more valid assessment of 
land cover maps generated from data before 1992. 

The use of DOQ data sets to assess satellite derived classification accuracies appears to be a viable 
methodology. In addition, this methodology could be applied to assess classification accuracy in other 
project areas that have used Landsat MSS data obtained from the NALC program. 
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Appendix 1


Ground Control Points Used to

Georeference the 1992 NALC Subset Image to

a Precision Corrected 1997 Landsat TM Image


GCP_ID X source Y source X destination Y destination X residual Y residual 
RMS 
Error 

GCP #1 576.625 750.875 567530.688 3547876.688 -0.156 -0.424 0.452 

GCP #2 534.625 808.625 565001.313 3544399.688 -0.100 -0.080 0.128 

GCP #3 359.125 886.625 554470.563 3539739.938 0.309 -0.058 0.314 

GCP #4 466.781 1635.031 560794.891 3494862.234 0.062 0.440 0.444 

GCP #5 525.531 1662.531 564343.141 3493244.859 0.458 -0.148 0.481 

GCP #6 489.875 1054.625 562279.563 3529636.688 0.038 0.392 0.394 

GCP #7 587.875 937.125 568177.281 3536692.219 -0.112 -0.010 0.113 

GCP #8 625.781 1401.781 570399.391 3508848.609 0.292 0.019 0.293 

GCP #9 492.406 1625.656 562319.641 3495464.297 -0.208 -0.270 0.341 

GCP #10 735.625 1699.125 576914.313 3491004.938 -0.249 0.351 0.430 

GCP #11 749.031 981.781 577841.453 3534006.984 -0.256 -0.073 0.266 

GCP #12 623.781 1220.531 570285.391 3519732.047 -0.121 -0.384 0.402 

GCP #13 478.750 1441.250 561562.609 3506524.078 0.322 -0.445 0.549 

GCP #14 982.031 2413.531 591603.391 3448200.609 -0.091 0.046 0.102 

GCP #15 912.375 2564.125 587377.375 3439174.125 -0.361 0.212 0.418 

GCP #16 962.125 2015.125 590455.375 3472091.625 -0.427 -0.285 0.514 

GCP #17 1112.625 2004.875 599546.875 3472647.375 0.398 0.476 0.621 

GCP #18 1133.531 2163.781 600767.031 3463162.219 0.254 -0.142 0.291 

GCP #19 471.531 941.031 561179.641 3536450.859 -0.252 0.276 0.374 

GCP #20 145.625 1640.375 541488.813 3494588.813 -0.170 0.111 0.203 

GCP #21 508.031 722.406 563431.141 3549560.859 0.110 0.030 0.114 

GCP #22 991.125 1662.875 592290.063 3493156.688 0.119 0.326 0.347 

GCP #23 825.375 1247.625 582414.813 3518065.688 0.290 0.052 0.295 

GCP #24 550.531 579.031 565999.703 3558185.672 -0.037 -0.611 0.612 

GCP #25 804.531 1950.031 581015.641 3476002.359 -0.168 -0.244 0.296 

GCP #26 661.531 1987.031 572437.141 3473807.859 0.124 -0.415 0.433 

GCP #27 440.625 357.375 559413.531 3571419.469 -0.402 0.314 0.510 

GCP #28 365.625 154.375 554967.531 3583603.219 0.006 0.060 0.060 

GCP #29 309.906 591.906 551565.344 3557368.969 0.328 0.483 0.584 

X RMS Error 0.249 

Y RMS Error 0.301 

Total RMS Error 0.390 
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