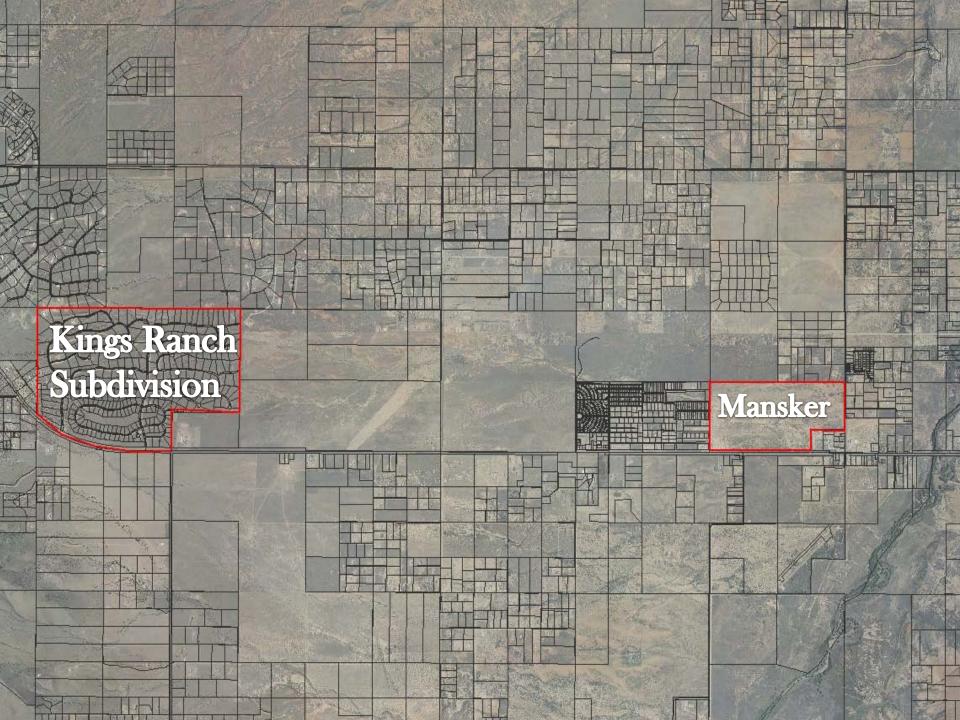
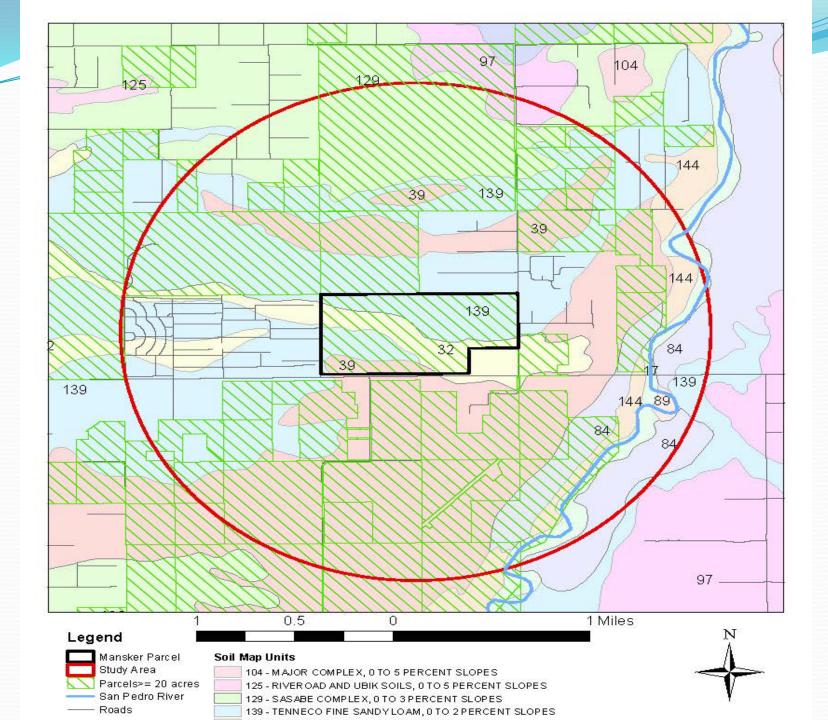
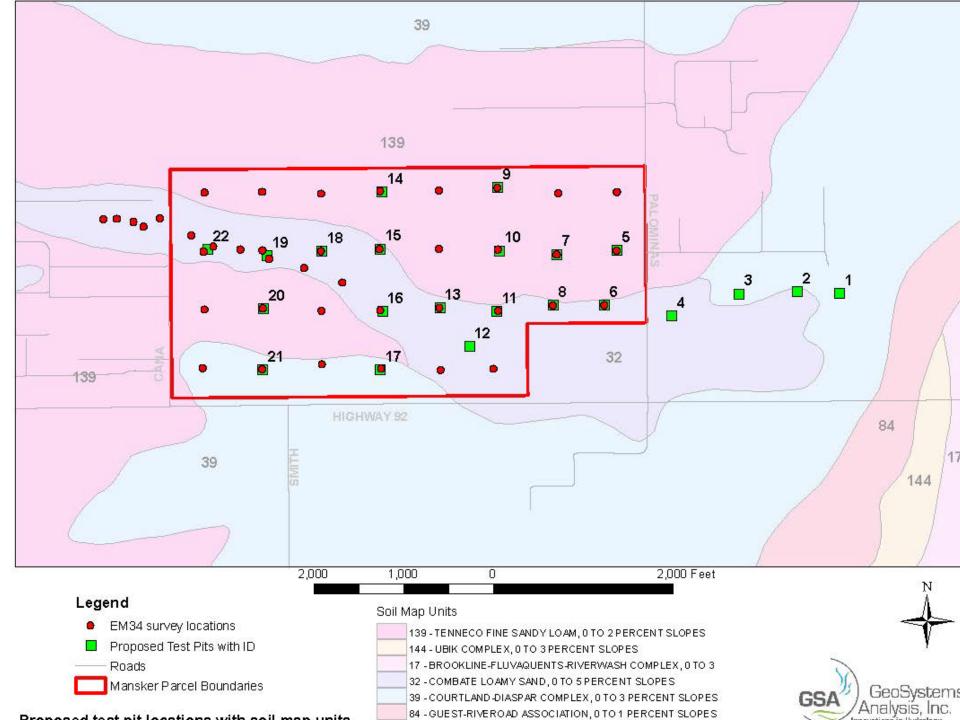

Palominas Recharge Project A demonstration project for recharge


in the Upper San Pedro subwatershed

•

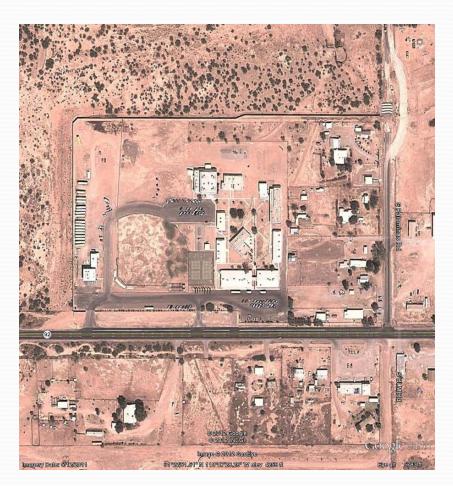



Cochise County Grant

- Grant amount- up to \$1,693,265 over 3 years
 - Components:
 - Phase I Acquisition of Mansker property
 - Analysis and design of Mansker Flood/Recharge facilities
 - GIS tool/database
 - Pipeline Feasibility study and report
 - Phase II King's Ranch analysis and design
 - Construction of Mansker facilities and monitoring
 - Phase III Construction of King's Ranch facilities & monitoring
 - Phase IV Ongoing monitoring and reporting

Recharge Study Sequence

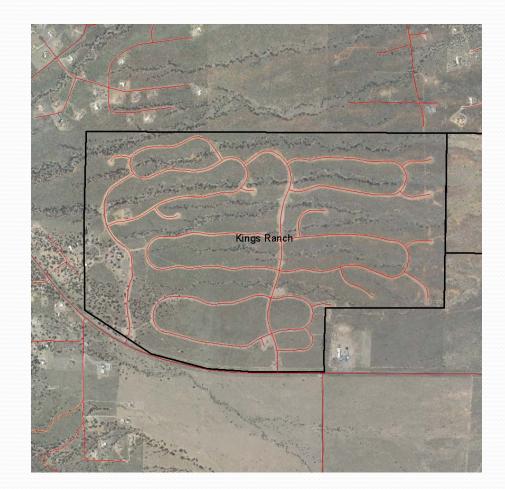
- Mansker site assessment
 - Identify areas with soils/sediments > 2 feet/day infiltration
 - Phase I Near-surface evaluation
 - Test pits (8 to 12 feet)
 - Infiltration tests
 - Phase II Deeper sub-surface evaluation
 - Shallow boreholes (surface to groundwater)
 - Location and design
- Screening Level Study to identify other potential sites
 - Review other areas near to Manker that may have good recharge potential



Soil Map Unit Symbol	Soil Series	Soil Name	Estimated Relative Permeability	-	e of % Iay	Permeability Range (inches/hr)		
32	COMBATE LOAMY SAND, 0 TO 5 PERCENT SLOPES	Combate	Moderate-High	3	15	2	20	
39	COURTLAND-DIASPAR COMPLEX,	Courtland	Low-Moderate	5	35	0.2	6	
	0 TO 3 PERCENT SLOPES	Diaspar		5	35	0.6	6	
84	GUEST-RIVEROAD ASSOCIATION,	Guest	Low	30	50	0.06	0.6	
	0 TO 1 PERCENT SLOPES	Riveroad	LOW	5	50	0.06	6	
129	SASABE COMPLEX, 0 TO 3	Sasabe sandy	Low-Moderate	5	60	0.06	6	
	PERCENT SLOPES	Sasabe silt loam		10	60	0.06	6	
139	TENNECO FINE SANDY LOAM, 0 TO 2 PERCENT SLOPES	Tenneco	Moderate	7	35	0.2	6	
144	UBIK COMPLEX, 0 TO 3 PERCENT	Ubic silt loam	Moderate	5	20	0.6	6	
	SLOPES	Ubic fine sandy loam	wouerate	5	15	2	6	

Flood Control

Flooding has been a problem for the 0 Palominas School and surrounding areas for many years. With this in mind, Cochise County has selected the Mansker site for the construction of a flood control detention basin as part of a larger flood control project. Several phases of the project have already been constructed to include flood water diversion wall, culverts and drainage channels. The detention basin would be the last phase of the project.


GIS Database/Inventory

 To set the framework for longer term, basin wide storm water management, Cochise County will generate a GIS based tool that locates existing and proposed drainage features that are currently or could be susceptible to recharge within the Upper San Pedro Basin. The layers will include existing basins, channels, drainage easements, rights of way throughout the multi-jurisdictional basin. The GIS tool will be used to plan regional detention/recharge systems that build on the existing infrastructure.

Pipeline Feasibility Analysis

- Development of a tool that measures the feasibility of constructing infrastructure to convey stormwater runoff collected at one site to transfer it to a potential recharge site.
- The tool will measure feasibility as a function of recharge area, development density, delivery capacity of pipeline, onsite storage, etc.

- Kings Ranch (formerly Kinjockity) – Recharge feasibility & onsite capture
 - Kings Ranch will be evaluated using the pipeline feasibility tool
 - Onsite capture and recharge will also be considered for Kings Ranch

Project 3-year timeline

- o 2012
 - Winter Mansker site feasibility
 - Spring-Summer Mansker site design, GIS development, Pipeline Feasibility
 - Fall Kings Ranch site evaluation & prelim. design
- o 2013
 - Mansker site construction
 - Kings Ranch site final design
- o 2014
 - Mansker site monitoring
 - Kings Ranch site construction

Phase I – Project Status

- Data Collection Ongoing
- Preliminary Hydrologic Modeling to be completed March 2012
- Alternative Site Recharge Screening to be completed March 2012
- Mansker Site Initial Recharge Feasibility to be completed March 2012
- Mansker Site Detailed Recharge Feasibility to be completed May 2012
- GIS Tool Criteria Development & Model Selection Geodesy/Encompass platform selected, data sets being identified for collection/compilation
- Pipeline Feasibility Assessment Planned for April 2012
- Kings Ranch Site Recharge Feasibility Assessment Planned for April May 2012

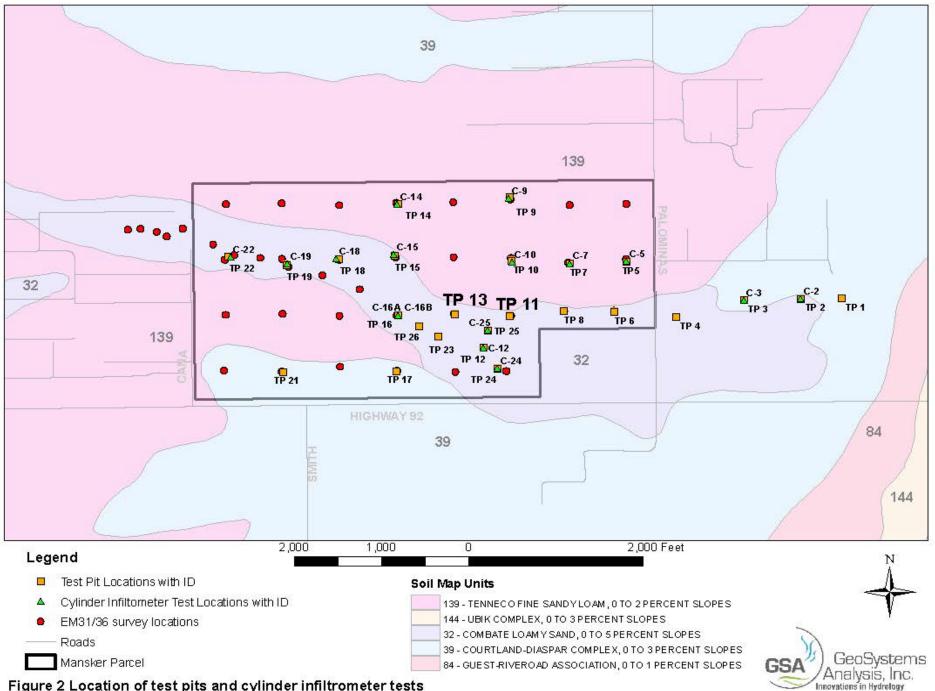


Figure 2 Location of test pits and cylinder infiltrometer tests

Estimated Field Hydraulic Conductivity

Depth (ft											Р	it nı	ımb	er										
bgs)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	22	23	24	25	26
1	4.4	4.4	4.4	0.6	2.3	0.6	2.3	0.6	4.4	2.3	4.4	0.6	0.6	4.4	2.3	0.6	0.6	0.6	4.4	4.4	0.6	0.6	0.6	0.6
2	4.4	4.4	4.4	0.6	0.6	0.6	0.6	0.6	0.6	2.3	2.3	0.6	0.6	2.3	0.6	0.6	0.6	0.6	2.3	2.3	4.4	0.6	4.4	0.6
3	4.4	4.4	4.4	0.6	0.6	0.6	0.6	0.6	0.6	2.3	2.3	0.6	0.6	0.6	4.4	0.6	0.6	0.6	4.4	4.4	2.3	0.6	2.3	4.4
4	4.4	4.4	4.4	0.6	2.3	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	2.3	4.4	0.6	2.3	4.4	4.4	2.3	0.6	2.3	0.6
5	4.4	4.4	4.4	0.6	2.3	0.6	0.6	4.4	0.6	0.6	0.6	4.4	0.6	0.6	0.6	4.4	0.6	2.3	4.4	4.4	2.3	0.6	0.6	0.6
6	0.6	4.4	4.4	0.6	0.6	0.6	0.6	4.4	0.6	0.6	0.6	4.4	0.6	0.6	0.6	4.4	0.6	0.6	4.4	0.6	2.3	0.6		0.6
7	0.6	0.6	4.4	0.6	0.6		0.6	2.3		2.3	0.6	4.4	0.6			4.4	0.6	0.6	4.4	0.6	0.6	0.6		0.6
8	0.6	0.6	4.4	0.6	0.6		0.6	0.6		0.6	0.6	4.4	0.6			4.4			4.4	0.6	0.6	0.6		4.4
9	4.4	0.6	0.6	0.6	0.6		0.6	0.6		0.6		0.6				4.4			4.4					
10		0.6	0.6				0.6			0.6		0.6				4.4								
11																4.4								
12																								
Geomean Hydraulic Conductivity (ft/day)	2.2	1.9	2.9	0.6	0.9	0.6	0.7	1.0	0.8	1.0	1.0	1.3	0.6	1.0	1.3	2.5	0.6	0.8	4.1	1.9	1.5	0.6	1.5	0.9