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Watershed 

 
 
 
 
Project Summary 
 
 The objective of the project described in this report was to estimate the area of 
impervious surfaces within a large section of the Sierra Vista subwatershed of the larger 
Upper San Pedro River basin. This was accomplished using high-resolution satellite 
imagery and GIS-based object-oriented classification software. Object-oriented 
classification has been shown to effectively overcome some of the limitations of more 
traditional vegetation-based methods that are not well-suited to sparsely vegetated arid 
and semi-arid areas such as southeastern Arizona. This report summarizes the steps 
used to produce a map of impervious and pervious surfaces for the study area as well as 
an assessment of the accuracy of the classification. It describes the study area, data 
pre-processing steps, the generation of data layers used to enhance the classification, 
and the workflow of the classification process for the Feature Analyst software. The 
approach that was developed produced a good mean overall classification accuracy 
across the set of subdivided images (89.7% with a range of 82.9-96.0%) and high mean 
overall Kappa coefficient of agreement (0.84; Kappa = 1.0 for a perfect classification and 
0 for no agreement).  
 The study area has experienced rapid urbanization and development in recent 
years, likely altering runoff and recharge patterns within the watershed. Improved 
estimates of the amount of impervious surface associated with this development are 
critical to more effectively modeling and predicting the changes in runoff due to 
urbanization, and by implication, better estimation of the larger impacts of development 
within this environmentally sensitive watershed. The results reported here represent a 
significant improvement over previous estimates of impervious surfaces in the 
watershed.   
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1. Project Overview 

The objective of this project was to update previous estimates of the area of 
impervious surfaces in and around the Sierra Vista municipal area. Recent and 
continuing rapid urbanization in the Sierra Vista watershed has implications for 
movement of runoff, in particular the potential enhancement of recharge to groundwater 
(Goodrich et al, 2004, Coes and Pool, 2005; Kennedy et al., 2011). The substantial 
increase in runoff due to urbanization has been demonstrated by instrumental records in 
the La Terraza watershed and adjacent natural watershed on Ft. Huachuca. A more up-
to-date estimate of the amount of impervious surface within the watershed can be used 
to determine the upper bound of urbanization for hydrologic modeling purposes to help 
understand the implications of urbanization for water cycling in the area.  The general 
study area is the western portion of the Sierra Vista subwatershed of the Upper San 
Pedro river basin. 

Traditional classification methods for discriminating between pervious and 
impervious surfaces have consisted generally of either manual delineation or automated 
classification based on spectral characteristics of imagery using such indices as 
Normalized Difference Vegetation Index (NDVI) (Finke et al., 2007). Both methods have 
important drawbacks; manual delineation is very labor intensive and impractical for 
larger areas, and spectrally-based methods are problematic in arid and semi-arid 
landscapes with a large amount of non-vegetated natural pervious surfaces. Recent 
work using object-oriented classification has shown to be effective at achieving desired 
accuracy without being prohibitively time-consuming for larger areas, even with higher-
resolution imagery. Finke et al. (2007) developed a semi-automated method for 
detecting impervious surface for the relatively small (31.5 ac, 12.8 ha) La Terraza 
subdivision using the Feature Analyst object-oriented classifier with good results. That 
methodology was adapted to classify the present study area, which is many times larger 
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in spatial extent than the La Terraza subdivision. This report describes the process of 
adapting the methodology described by Finke et al. (2007) to achieve accurate 
classifications of pervious and impervious surfaces using QuickBird imagery of the 
Sierra Vista study area. A vector shapefile version of the impervious surface map layer 
generated by the study can be downloaded at http://www.tucson.ars.ag.gov/dap/. 
 
2. Study Area and Data 
 The study area consisted of a large section of the Upper San Pedro Watershed 
containing the developed areas of Sierra Vista and Ft. Huachuca (Figure 1). The scenes 
were bounded to the south by the U.S.-Mexican border and to the west and north by 
portions of the Sierra Vista subwatershed boundary. Six overlapping QuickBird scenes 
with an acquisition date of December 26, 2009 were acquired from Digital Globe. Swath 
width of the QuickBird satellite is 18.0 km2, thus the nominal total area encompassed by 
the six scenes was 1,944 km2; the actual total area is smaller due to image overlap. For 
each of the six scenes there were two images: one multi-band with a spatial resolution of 
2.4 m and a 0.6 m panchromatic band. Multi-band images contained four bands: blue, 
green, red, and near-infrared (NIR). Twelve images in total were acquired.   
 
 
Figure 1. The study area with the Upper San Pedro Watershed boundary and 
international border in yellow and the QuickBird imagery coverage in red.  
 

 
 
 
 

http://www.tucson.ars.ag.gov/dap/
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3. Pre-processing 
Pre-processing steps were done to increase the spectral resolution and 

positional accuracy of the images. First, the multi-band images were pan-sharpened 
using the panchromatic images to increase the resolution from 2.4 to 0.6 m to match the 
panchromatic images. Second, because all of the images were roughly georeferenced 
prior to acquisition (roughly 10 m accuracy) but not orthorectified, orthorectification was 
performed to improve positional accuracy.  A 10 m digital elevation model (DEM) from 
the National Elevation Dataset was acquired from the USGS Seamless Server online 
and given the same horizontal projection as the QuickBird imagery.  All twelve QuickBird 
images were orthorectified using the QuickBird orthorectification model in ERDAS 
Imagine, which incorporated the 10 m DEM, sensor settings contained in the rational 
polynomial coefficient files accompanying each QuickBird scene, and ground control 
points acquired from 2007 National Agriculture Imagery Program 1 m orthophotographs.  
The root mean squared error obtained for all images was less than 1.5 pixels with a 
range from 1.02 to 1.40 using an average of 15 control points per image.  
 
4. Generation of Input Data Layers 

Finke et al. (2007) also used QuickBird data and tested three different 
combinations of derived data sets for classification to determine which produced the best 
result. These were called “Vis,” “Pan/Vis/NIR-Plus,” and “PCA-Plus.” The “Pan/Vis/NIR-
Plus” combination, which consisted of the four QuickBird multispectral bands, 
Normalized Difference Vegetation Index (NDVI), edge-enhanced images, and the 
panchromatic band produced the most accurate classification. Based on those results, 
this study replicated that combination of input bands. In order to enhance the 
classification by detecting vegetation, the NDVI was calculated for each multi-band 
image using the formula  

 
NDVI = (DNNIR – DNRED) / (DNNIR + DNRED) 

 
where NIR is band 4 and RED is band 3. The Sobel filter was used to create a non-
directional edge enhancement of the panchromatic band to further delineate more 
defined linear features associated with impervious surfaces such as buildings, roads, 
and parking lots. The data sets used for inputs for training the classifier included seven 
total data layers: the panchromatic band, the red, green, blue, and NIR bands, and the 
two derived layers which were the NDVI and edge-enhanced images. 

All images overlapping the Sierra Vista subwatershed boundary were clipped to 
that boundary. Initial testing of the Feature Analyst classifier with the seven data layers 
resulted in processing times that were so lengthy as to be unworkable. In order to make 
processing manageable, the images were “diced” into smaller tiles. A 5 m “collar” was 
used during the dicing process to ensure the images overlapped to prevent the loss of 
edge pixels. Dicing all the QuickBird scenes resulted in a total of 21 individual tiles, each 
one to be classified individually.  
 
5. Classification Workflow 
 This section summarizes the procedures used to classify impervious surfaces. 
The steps involved in a Feature Analyst classification workflow are outlined in the 
software documentation as follows: 
 
A. Defining feature target examples for the Feature Analyst learner tool in a training set. 
B. Running an initial learning pass. 
C. Revise the classification: 
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• Refining the training set, as necessary. 
• Training the Learner to recognize the targets through a sequence of Hierarchical 

Learning passes with adjustments, as necessary, to the input representation. 
• Masking out troublesome features, if necessary. 
• Removing clutter (noise) and finding missed features by correcting the Learner 

 through the selection of correct, incorrect, and missed examples. 
• Repeating the hierarchical learning process until satisfied with results. 

D. Applying post-processing techniques such as smoothing and converting polygons to 
 lines or points. 
E. Saving results for hand-editing, batch classifying, or for use with Feature Modeler. 
 
These procedures were used on 18 of the 21 tiles. The remaining three were classified 
manually because there were so few impervious features present in them.  
 
5.A.  Defining a Training Data Set 

The first step in a supervised classification is to identify impervious features from 
which to create a training polygon data set. In order to train the classifier to distinguish 
between pervious and impervious surfaces, training polygons needed to capture both 
the edges of shapes and their internal spectral characteristics. Following Finke et al. 
(2007), a simple classification scheme of three classes was used: pervious, impervious, 
and shadow. Two sets of training polygons were created for each image tile: impervious 
and shadow. Training data sets for pervious were not created for reasons explained in 
section B below.  

The goal was to capture the spatial and spectral diversity of shapes and their 
distribution throughout the scene. Initial training polygons were later refined following a 
round of accuracy assessments of the initial classifications in order to produce a more 
accurate result. Shadow pixels were to be later reclassified as pervious or impervious to 
produce a two-class classification for the final output. Features considered impervious 
were all paved or sealed surfaces that could be discerned from inspection of the images. 
These included objects such as paved roads, parking lots, sidewalks, airport runways, 
buildings, residential structures, driveways, and recreational areas with sealed surfaces 
such as running tracks. For the purposes of this classification, we considered everything 
that was not paved or sealed to be pervious; these features consisted mostly of 
vegetated surfaces (forested and shrub-dominated), undeveloped bare areas, unpaved 
roads and trails, agricultural plots, individual trees, playing fields, washes, lawns, parks, 
and road medians.  

Dark asphalt was an obvious impervious surface, as were buildings and homes 
with bright, uniform reflectance. However, in this rapidly developing area where 
neighborhoods and subdivisions are often only partially developed, there can be a 
variety of surfaces that may or may not appear to be impervious depending on a 
particular band combination, or even regardless of band combinations. Consequently, 
roads and other surfaces in various stages of improvement are often problematic for the 
classifier to classify accurately. However, a few basic types of roads could be 
distinguished by the observer using contextual clues and ancillary data such as Google 
StreetView street-level photographs:  
 
1) Dark asphalt. The “most developed” road surface, usually easily distinguishable 
based on clearly painted lines (usually dotted), presence of a median between lanes, 
and a very low reflectance that is also very homogeneous/uniform across the surface. 
Often found in parking lots. 
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2) Non-asphalt paved roads. Distinguishable by lighter coloration as associated with 
concrete, painted lines and low reflectance. Less homogeneous than dark asphalt. Also 
often found in parking lots. 
 
3) Graded but unpaved roads. These tend to appear bright in the imagery due to 
presence of gravel, rock, and compacted soil, but not homogeneous like buildings. Often 
discernible due to spatial context, e.g. in mining, industrial, undeveloped/forested areas, 
and connection to other non-paved areas.   
 
4) Dirt roads. These surfaces are distinguishable by a tan or reddish coloration 
characteristic of nonvegetated natural surfaces in natural color imagery.  
 
For this classification, we considered the first two surface types to be impervious, and 
the rest pervious, and the classifier was trained accordingly. 
 
 The training data for shadows were designed primarily to capture at least the 
shadows cast by buildings and structures and shadows associated with natural surfaces, 
e.g. those by tall trees in forested areas. In the portions of the study area with a relatively 
high amount of relief, i.e. the southwest area, large areas were cast in shadow by 
ridgelines. However, as these areas were clearly pervious, we generally limited the final 
training data sets to those shadows cast by individual features only, and not entire areas 
of pervious area. This is also because these areas would later be converted to pervious 
classification for the final output anyway. 
  
5.B. Running a Learning Pass: Classifier Settings 
 Following the creation of the training polygons, the second major step is setting 
up the parameters of Feature Analyst. Feature analyst settings were kept the same 
among the tiles in order to be consistent. Extensive testing and examination of the 
results of different combinations of classifier settings and training data sets helped 
determine an effective classification model that could be applied across all tiles. This 
process retained most of the same settings used by Finke et al. (2007) but also deviated 
in some ways due to the vastly greater spatial extent and diversity of features that had to 
be accounted for in order to optimize the accuracy of results. 
 The initial round of classifications using the same settings as Finke et al. (2007) 
indicated that a key source of error resulted from the confusion of certain bare natural 
surfaces with impervious surfaces that had very similar shapes and reflectances. The 
common result was the erroneous detection or “false positives” of impervious shapes in 
natural areas with bare patches, which littered the undeveloped areas of the images. 
This effect could be minimized by altering the classification method such that rather than 
using three input training data classes (shadow, impervious, and pervious), only two 
were used (shadow and impervious), and then leaving the remainder of the image 
temporarily unclassified. Finke et al. (2007) used a “wall-to-wall” classification type 
where every pixel is classified into one of the three input classes. For this study, the wall-
to-wall setting was turned off, permitting the classification of only the two input layers 
and leaving the rest as unclassified background area. Testing results showed that doing 
this minimized the confusion between pervious and impervious training polygons which 
seemed to be the primary source of this type of error. The reasoning behind the altered 
classification scheme was that everything that was not shadow or impervious (the 
“background” pixels) was pervious, therefore the two input training classes were used to 
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extract just those two classes initially, and the unclassified background areas (the 
pervious areas) could then be classified in a later step and renamed “pervious.”  
 Feature Analyst processing settings are in four groups as follows:  
(1) The input representation settings determine the pattern used by the classifier to 
detect impervious features. Although certain preset patterns are recommended by 
Feature Analyst for certain types of features, e.g. buildings, trees, roads, etc., we 
needed to use just one pattern to detect all impervious shapes. We tested the custom 
pattern used by Finke et al. (2007) but found it tended to produce too many false 
positives in pervious areas. Comparison of the results from using different preset pixel 
patterns indicated that the “Bull’s Eye 4” pattern was more consistently effective than 
others at detecting both linear and rectangular/square impervious features with relatively 
lower amounts of misclassified false positive clutter in pervious areas. Consequently we 
used the Bull’s Eye 4 pattern with a width of 17 pixels (Figure 2). The inner portion of the 
pattern is designed to detect rectangular man-made shapes, while the outer ring of 
pixels helps to also detect linear shapes such as roads.  
 
 
Figure 2: “Bull’s Eye 4” classification filter pattern. 

 
 
 
(2) Input bands were the seven mentioned previously: the panchromatic band, edge-
enhanced, NDVI, and the red, blue, green, and near infrared (NIR) bands from the 
multispectral image. All were set as reflectance bands. The resampling factor was set to 
1 (no resampling). The option to create a wall-to-wall classification was left unchecked in 
order to return unclassified pixels (these were later to be converted to the “pervious” 
class). The option to “find rotated features” was selected in order to detect features such 
as buildings and roads oriented in all different directions. To reduce clutter, the classifier 
was set to aggregate small regions with a minimum of 100 pixels.  
 
(3) The masking settings were used to ensure that the classified area was identical to 
that of the correct image tile extent.  
 
(4) In the output options settings the output format selected was vector. The post-
processing option to aggregate small regions is used to consolidate or eliminate result 
polygons that are smaller than a specified size. This option was selected with the 
minimum area set to 100 pixels, which eliminated smaller “island” features with a size of 
36 m2 or less. This helped reduce clutter. 
 
 The classifier model created using these settings was applied to 18 of the 21 tiles 
using two-class (impervious and shadow) training polygon sets devised for each tile. 
Three tiles (321, 411, and 6) contained so few impervious surfaces that it made more 



 9 

sense to classify them manually. The output from the classification process is a two-
class vector layer.  
 
 
5.C. Revising the Classification: Hierarchical Learning, Post-processing, Cleanup 
 One of the main advantages of the Feature Analyst classifier is the array of tools 
used to iteratively refine the classifier until the desired result is produced. This process 
consisted of some or all of the following steps: 
 
1) Refining the training set, as necessary. 
2) Training the Learner to recognize the targets through a sequence of Hierarchical 
Learning passes with adjustments, as necessary, to the input representation. 
3) Masking out troublesome features, if necessary. 
4) Removing clutter (noise) and finding missed features by correcting the Learner 
through the selection of correct, incorrect, and missed examples. 
5) Repeating the hierarchical learning process until satisfied with results. 
 
 Typically, the first step was to split the classified output vector layer into separate 
layers to be cleaned up individually as necessary based on visual inspection of the 
results.  Based on this, one or both of the following two sets of tools in Feature Analyst 
were used iteratively to correct obvious misclassifications and to incorporate missed 
objects. 
 The Remove Clutter tools are used to tell the classifier what it did right and what 
it did wrong. It works by selecting whole polygons and digitizing portions of those 
features that were correctly and incorrectly classified in order to retrain the classifier 
more precisely. The classifier then runs another learning pass based on the new 
information and a new output layer is created. This may be repeated as many times as is 
necessary to achieve the desired result. 
 The Add Missed Features tool is best used once a good classification has been 
obtained, but some key features were still left out. The user draws polygons to capture 
examples of the missing features, and the classifier uses the information to retrain and 
produce an improved layer. 
 These two tool sets were used to retrain the classifier as needed until a 
satisfactory classification was produced, as determined from visual inspection based on 
main criteria of relatively small/minimal amount of clutter, no obvious systematic or major 
misclassifications, and generally good capturing of impervious objects throughout the 
image. 
 During the re-classification runs, the aggregation minimum threshold for the 
shadow class was lowered to 25 pixels in order to pick up additional shadow effects that 
were excluded due to the higher 100 pixel threshold, mentioned above in section B4. 
 Finally, the cleaned-up impervious layer was recombined with the shadow layer, 
with settings adjusted such that (a) the cleaned-up impervious layer takes precedence 
for conflicting pixels, and (b) any pixels not included in either of the two classes during 
the union of layers are classified into polygons. These now-classified “background” 
polygons, i.e. the remainder of the image that was left unclassified before, form the 
pervious class. The resulting three-class polygon layer was converted to raster format 
and pixel values were changed using the Reclass command in ArcMap as necessary 
into 1 (impervious), 2 (pervious), and 3 (shadow) for consistency across tiles.  Lastly, the 
raster image was clipped using the tiled panchromatic raster layer as a mask in order to 
remove any zero-value collar pixels. The image was then ready for accuracy 
assessment in ERDAS Imagine 
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6. Results and Classification Accuracy 
 The accuracy of each classified image tile was assessed in ERDAS Imagine 
software using a stratified random sampling approach with a minimum per-class sample 
size of 50 points to ensure that classes which comprised a very small geographic area in 
a tile were still adequately sampled. Although the impervious class was often a small 
part of the classified image compared to impervious in terms of area, it was extremely 
important; consequently, in most cases the impervious class was intentionally over-
weighted in terms of number of sample points. Three images (321, 411, and 6) were 
classified manually because there was so little impervious area. Since the small 
impervious areas in these images were easily digitized and all remaining area was 
impervious, it was not necessary to create a shadow class.  
 In-field validation of sample points was not feasible due to the large number of 
total points needed to evaluate the accuracy of all 21 tiles. Alternatively, high resolution 
ancillary images can be used to determine the accuracy of sample points; in this case 
we used the highest resolution data available, which was a combination of the QuickBird 
panchromatic and pan-sharpened multispectral images, aerial photos and “streetview” 
photographs of locations on the ground available online through GoogleEarth and 
GoogleMaps Street View, and experiential knowledge gained through previous work 
(Finke et al. 2007) on the La Terraza subdivision. Using one or more of these data sets 
helped to distinguish similar surfaces such as pervious gravel and xeriscaped yards from 
fully impervious roads, parking lots, and roofs. There were 5,257 sample points total for 
all 21 scenes combined (Table 1). This is a much more extensive sample compared to a 
recent study using a similarly large amount of QuickBird data by Campos et al. (2010), 
who used a total of 1,735 accuracy assessment points.   
 
Table 1. Sampling points for accuracy assessment 
Image 
Tile ID 

Number of 
Sample Points 

111 275 
112 225 
121 275 
122 200 
211 475 
212 275 
221 275 
222 275 
311 275 
312 275 
321 175 
322 275 
411 175 
412 275 
421 225 
422 275 
511 200 
512 275 
521 200 
522 200 
6 175 
Total: 5,275 
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 Error matrices were computed for each classified image tile in ERDAS Imagine 
(example shown in Table 2) and used to calculate standard accuracy metrics of 
percentage pixels correctly classified and the Kappa coefficient of agreement 
(Congalton, 1991; Janssen and van der Wel, 1994). From the error matrices we 
calculated overall accuracy as a percentage correct out of all sample points, and 
producer’s and user’s accuracy of each individual class (Table 3). Producer’s accuracy 
indicates how well a reference pixel was classified; user’s accuracy indicates the degree 
of reliability that the different map classes are accurate representations of those 
categories on the ground (Jensen, 2004, p. 505-506). The Kappa coefficient of 
agreement, a metric for accuracy that factors in the probability the result could have 
been produced by chance, was also calculated for overall classification and for individual 
classes (Table 4).  
 Mean overall accuracy for the 21 classifications was 89.7% with a range of 82.9-
100%. 100% accuracy was associated only with those images that were classified 
manually. Excluding those three images, the mean overall accuracy was 88.1% which 
was not significantly lower (t = 1.213; p > 0.05; df = 34). Mean producer’s accuracy for 
the impervious class (94%) was higher than for the pervious class (85%) (t = 4.344; p < 
0.05; df = 33). Mean user’s accuracy for the impervious class was accurate at 84%, but 
significantly lower than the pervious class (97%) (t = -5.568; p < 0.05; df = 26). The 
mean Kappa coefficient was higher for the pervious class than the impervious class (t = -
5.087; p < 0.05; df = 31).  
 
 
Table 2. Sample error matrix for tile 221. The main diagonal (in bold) indicates the 
number of correctly classified pixels.  
 Predicted Class 
     
Actual Class Impervious Pervious Shadow Row Total 
Impervious 75 25 0 100 
Pervious 2 96 2 100 
Shadow 10 0 65 75 
Column Total 87 121 67 236 
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Table 3. Classification accuracy in percentage correct. N/A indicates tile was classified 
manually. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 13 

Table 4. Overall and per-class Kappa coefficients (k) with confidence intervals for overall 
k.  
 

 
 
 
7. Reclassification of Shadow Pixels 
 In order to produce a final classified image without any shadow pixels, we 
needed a way to reclassify them systematically and consistently. The problem this posed 
was that it is sometimes difficult to know for sure what kind of surface a shadow may be 
obscuring, whether impervious or pervious. We reasoned that a shadow feature cast in 
an undeveloped area would be surrounded by pervious pixels and therefore those 
surrounding pixels could be used to reclassify the shadow pixels. The same would apply 
to impervious surfaces in the developed areas, e.g. a shadow cast by a building over a 
parking lot would be surrounded by impervious pixels, which could be used to reclassify 
the shadow as impervious. The “neighborhood analysis” tool in ERDAS Imagine uses 
this basic logic to reclassify pixels of a particular class based on the surrounding pixel 
values. We set the operation to pass a 3x3 window over shadow pixels and reassign 
their value based on the majority value of the surrounding pixels in the “neighborhood.” 
The presence of somewhat large, contiguous shadow areas required us to replicate this 
process and run it iteratively in MATLAB to ensure that all shadow pixels were 
reclassified. Imagine did not have the capability to automatically repeat the 
neighborhood analysis. This process was run on every classified image that had any 
shadow pixels, producing a reclassified set of image tiles with only two classes, 
impervious and pervious.  
 
8. Mosaic Creation and Final Image 
 The images resulting from the neighborhood analysis in MATLAB contained 
background values of 0 in the collar around certain images. These values were 
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converted to ‘no data’ to eliminate them to ensure a clean mosaic. The mosaicing 
process was done in ERDAS Imagine using the Mosaic Tool. The tool was set to 
generate weighted cutlines automatically for overlapping portions of images, except in 
two instances where this setting resulted in small holes of no data. In these cases 
geometric cutlines were used instead.  
 The final resulting mosaicked image was 3.59 GB in size with a pixel resolution 
of 0.6 m and a total area of 1,179.5 km2. The total area is less than the original nominal 
area due to clipping to the watershed boundary and the elimination of overlapping areas 
among the six QuickBird images. Based on this image, the study area contains an 
estimated 18.6 km2 of impervious surfaces, or 1.6% of the total area, mainly 
concentrated in the highly developed core of Sierra Vista, and to a lesser extent Ft. 
Huachuca. 
 
9. Sources of Error 
 As stated in section 4 above, computing power was not sufficient to run the 
Feature Analyst classifier on any one of the six QuickBird files plus derived image files, 
much less a mosaic of the six scenes. This necessitated breaking them up into separate 
tiles which had to be classified individually using different training data sets. Although the 
calculated classification accuracies were satisfactory, the fact that each image tile was 
classified based on different training data unavoidably resulted in some discrepancies 
among the tiles which are evident from visual inspection. For example, roads in one 
image tile may be more conservatively classified than in another, resulting in edge 
effects in the final mosaic where the road is wider on one side of a cutline than on the 
other. Had it been possible to classify the entire study area at once, only one training 
data set would have been used and edge effects would not have resulted. 
Inconsistencies among classifications such as edge effects thus ultimately stem from 
limitations of processing power.  
 In each classified image tile, the goal was to strike a balance between accuracy 
and efficiency in terms of user time spent (e.g. preparing and iteratively revising training 
polygons) and computer processing time. With the iterative revising tools within Feature 
Analyst it is possible to eventually achieve a very high level of accuracy. However, we 
found that in many cases this would require a significant time investment on the part of 
the user. Further, after a few iterations of re-training the classifier, a point of diminishing 
returns was often reached where the gains in additional accuracy (based on visual 
inspection and comparison) were relatively small compared to the amount of time 
required to achieve them. Each image tile had its own unique set of features, and 
consequently this point of diminishing returns was different for each tile. A perfect 
classification is of course not possible, and in each tile some tradeoffs had to be made; 
for instance, in several cases achieving an extremely high degree of accuracy for roads 
in a given tile was not possible without producing a large amount of false positives for 
those natural surfaces with similar spectral and shape characteristics to impervious 
roads, which would lead to lower user’s accuracy (i.e. greater errors of commission). In 
this case, creating a classification model that produced a balance between the two, i.e. 
adequate classification of roads without a high amount of false positives in pervious 
areas, meant necessarily sacrificing some accuracy for roads. Discrepancies that are 
apparent from visual inspection in the final image are the result of these unique tradeoffs 
that had to be made in each tile based on the variety of features that it contained. In 
sum, each classified tile reflects the best effort of the user to achieve a satisfactory level 
of accuracy (as quantified by the traditional metric of the error matrix) within a 
reasonable amount of time invested in refining the initial classification.  
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 After examining the initial classification result, an important source of confusion 
was identified, which had to be addressed iteratively in post-classification cleanup 
procedures. This confusion was primarily between rectangular building structures with 
high reflectances and pervious (although likely highly compacted) natural surfaces with 
similar reflectances and shapes. In many cases it was evident from ancillary data that 
the natural surfaces were impervious rock. In this case, during accuracy assessment we 
counted it as correct if it was classified as impervious. However, there were also 
instances where the surface was not rock, but rather brightly-reflecting bare soil or a 
graded unpaved road with similar rectangular shape to buildings. When these areas 
were classified as impervious, they were considered a misclassification. Cleanup tools in 
Feature Analyst were useful for removing this clutter to a significant degree, but total 
accuracy was impossible. Additionally, roads and other surfaces are not spectrally 
homogeneous, and a training polygon in one part of a road may not be adequate to 
make the classifier capture all parts of a road feature. Training data sets took this into 
consideration, but could not always prevent gaps in road features. In many cases, 
creating a training polygon around one portion of a road led to more false positives in 
other spectrally similar non-road objects. When this limitation was found, we generally 
tried to be conservative, sacrificing some road accuracy in order to prevent false 
positives. Some amount of this type of error was found to be practically unavoidable, but 
could be improved to some extent using the hierarchical learning tools described 
previously.  
 Kappa values indicate that the classifier was more accurate for the pervious 
classes than the impervious classes, although impervious Kappa values were mostly 
very good, with a mean value of 0.77. In all tiles, the Kappa values show that overall and 
per-class accuracies were not due to chance. Percentage accuracy results show that 
while producer’s accuracy was quite high for impervious classes, the main source of 
error was found in the user’s accuracy. In other words, sample pixels that were actually 
impervious were classified at a high level of accuracy, while those pixels that were not 
impervious were more frequently classified incorrectly as impervious. Visual inspection 
of the classified results showed that this is to some degree related to the inability of the 
classifier to distinguish boundaries and edges between certain adjacent features. For 
example, in many cases the roads outside of the highly developed core of Sierra Vista 
appeared in the imagery to have a somewhat fuzzy gradient from the paved surface to 
the shoulder to the undeveloped ground. Bright road stripes and unpaved medians are 
separate objects, making training data creation difficult and consequently road 
classification difficult as well.  
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Appendix A 
 

The procedures described above were designed to produce an estimate of the 
total amount of completely impervious surfaces, e.g., pavement, in the Sierra Vista 
subwatershed as of late 2009. However, highly developed land uses such as 
commercial and higher-density residential result in soil compaction even when the soil 
surface is not completely sealed with an impervious surface such as pavement. This 
may reduce permeability of soil substantially relative to undeveloped bare soils.  

Previous estimates such as the Regional GAP Analysis Project estimated 
degrees of imperviousness at the scale of a 30x30 m grid cell, since most urban features 
are too small to be resolved at that resolution. Although the high resolution (0.6 m 
panchromatic, 2.4 m multispectral) of QuickBird imagery enables the resolution of most 
urban features, the classification method described above was designed to identify only 
completely impervious surfaces and consequently could not capture compacted soils 
which were undeveloped. In order to account for some of these areas, buffer zones of 
1.8 and 3 m were created around the impervious surface polygons in the vector version 
of the map derived from QuickBird imagery. These buffer distances were based on the 
assumption that soils that are adjacent to completely impervious developed surfaces are 
likely also compacted to some degree relative to their undisturbed condition.  The 
estimated area of totally impervious surfaces is 18.6 km2. Generating a 1.8 m buffer 
zone added 9.7 km2 of impervious or highly compacted surfaces, increasing the total 
impervious or compacted area in the subwatershed to 28.3 km2. Creating a 3 m buffer 
zone added 15.4 km2 to the original impervious area, for a total impervious or compacted 
area of 34 km2.  

 
 

Appendix B 
 
 The USPP Technical Committee requested data and analysis of changes in the 
amount and distribution of increases in impervious surfaces in the Sierra Vista area 
since 2001. This appendix reports results of two related comparisons. The first estimates 
the change in impervious surfaces in the Sierra Vista subwatershed, 2001-2009 based 
on National Land Cover Dataset (NLCD) products for 2001 and 2006 (Fry et al., 2011) 
and includes the most recent estimates obtained using the methods described in the 
main report for comparison. The second compares two estimates for the Coyote Wash 
watershed. 
 
1. Increases in Impervious Surfaces in the Sierra Vista Subwatershed, 2001-2009 
 
Data sets used in the 2001 to 2006 comparison: 
- NLCD 2001 impervious surface area version 2.01 (Fig. 1) 
- NLCD 2006 impervious surface area (Fig. 2) 
- NLCD 2001-2006 percent change in impervious surface area 
- Sierra Vista subwatershed boundary polygon 
 

                                                 
1 USGS states that NLCD 2001 version 2.0 revisions were designed to make the 2001 
maps directly comparable with the 2006 NLCD.  
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Figure 1. NLCD 2001 impervious surface map. Sierra Vista subwatershed boundary 
shown in yellow. 
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Figure 2. NLCD 2006 impervious surface map. Sierra Vista subwatershed boundary 
shown in yellow.  

 
 
 
Processing Steps: 
 

1. The Sierra Vista subwatershed boundary polygon was reprojected to match the 
NLCD data sets 

2. All three NLCD raster data sets were clipped by the subwatershed boundary 
polygon extent.  

 
In the 2001 Version 2 and 2006 NLCD imperviousness data sets, each pixel value is 

assigned a percentage. This is included in the raster attributes table in integer form in a 
column titled “value.” Also included is the count of grid cells with that percentage of 
impervious area. To find the total area in the clipped images, the counts (number of 30m 
x 30m cells) were multiplied by 900 (the area of each cell in square meters) and 
summed. To find the estimated impervious areas, the “value” integer was divided by 100 
to create decimal values, which were then multiplied by the total area in m2 associated 
with each impervious value and then summed over all pixel values (0-100%). Total area 
and total impervious area were converted to km2. The total area of the subwatershed 
boundary is 2,671.17 km2. Results are shown in Table 1. Added to these results is the 
estimated impervious surface area obtained from Feature Analyst object-oriented 
classification of 2009 QuickBird imagery covering most of the developed part of the 
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subwatershed. This area of 18.66 km2 is an increase of 2.55 km2 (16%) compared to 
2006 and 4.52 km2 (32%) compared to 2001. 
 
Table 1. Three chronological estimates of impervious surface areas in the Sierra Vista 
subwatershed. 
Estimate Year and Source Impervious Surface 

Area (km2) 
Increase Over Prior 

Estimate (km2) 
2001 NLCD v.2.0 (USGS) 14.14 - 
2006 NLCD (USGS) 16.11 1.97 (14%) 
2009 QuickBird (USDA-
ARS SWRC) 18.66 2.55 (16%) 

 
 
 The NLCD impervious surface change data set shows where the increase in 
impervious surface between 2001 and 2006 happened, and where it was most 
pronounced. The zoomed out view in Fig. 3 shows that nearly all the additional 
impervious surfaces were in Sierra Vista, with some around the Ft. Huachuca area. The 
most substantial contiguous developments were located in the southern end of Sierra 
Vista.  Figure 4 shows the Sierra Vista area in closer detail, with the 2009 Quickbird-
based estimates created as described in the main report above superimposed to provide 
context. In both images the magnitude of change from 2001-2006 is represented by the 
darkness of coloration, with gray pixels denoting relatively small increases in impervious 
surfaces and dark red indicating more significant increases.  
 
Figure 3. Location and intensity of increases in impervious surfaces in Fort Huachuca 
and Sierra Vista between 2001 and 2006 based on NLCD land cover change products.  
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Figure 4. Increase and distribution of impervious surfaces in Sierra Vista based on 
NLCD land cover products. Gray and red coloration represents impervious surfaces 
added in Sierra Vista between 2001 and 2006, with darker red coloration indicating more 
intense development. The most recent estimates of total impervious surfaces based on 
Dec. 2009 QuickBird imagery are overlaid in yellow to provide context.  
 

 
 
 
 
 
2. Impervious surfaces in Coyote Wash, 2001 and 2009.  
 

A previous analysis by Levick and Goodrich (2005) used land cover data from 
the 2001 Southwest Regional GAP Analysis Project (GAP) and 1997 North American 
Land Cover (NALC) Classification map to estimate the amount of developed land within 
the Coyote Wash watershed. They found that 6.2 km2 (13.6%) of Coyote Was was 
classified in the GAP map as “developed, open space – low intensity” and 14.2 km2 
(31.1%) was classified as “developed, medium – high intensity.” NALC 1997 estimated 
18.9 km2 of “urban” (high and low density).  
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The area of impervious surfaces inside Coyote Wash based on the map layer 
created for the present study was calculated for comparison. This produced an 
estimated 5.4 km2 of completely impervious surface within Coyote Wash watershed, or 
11.8% of the total area. With a 1.8 m buffer added to account for both impervious and 
highly compacted soils, the area increases to 8.2 km2 (18% of Coyote Wash); a 3 m 
buffer covers an area of 9.8 km2 (21% of Coyote Wash). Although this is actually lower in 
area than the proxies for imperviousness in the GAP and NALC maps, this should not be 
construed as demonstrating that impervious surfaces have decreased between 2001 
and 2009. This is related to the very different spatial resolutions and classification 
schemes used in the present study compared to NALC and GAP maps, which represent 
developed areas as percentages of 900 m2 grid cells, rather than an either/or 
classification.  
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