### Dashboard Stormwater Net Increase (Delta) from developed Areas

Alcely Lau & Eleonora Demaria

March 15<sup>th</sup>, 2023

Pima County Regional Flood Control District



FLOOD CONTROL

nearmap

### **Study Objectives**

Estimate stormwater net increase (Delta) volume from urban watersheds.

**2** Identify potential locations for recharge basins.

3 Attempt to cost out basins for groundwater recharge as well as for storage.



### DELTA: Stormwater runoff net increases due to development

$$Delta \ volume = Runoff_{post} - Runoff_{pre}$$





### Delta volume equation

 $Delta = Runoff_{post} - Runoff_{pre}$ 

Where, the **runoff pre-development** is,

 $Runof f_{pre} = (Rain) \times (\% RO_{Soil}) \times (Total Area)$ 

The runoff post-development is expressed as,

 $Runoff_{post} = (Rain) \times \left[ (\% RO_{imp}) \times (Area_{imp}) + (\% RO_{Soil}) \times (Area_{per}) \right]$ 

Replacing equations (2) and (3) into (1), delta is expressed as:

 $Delta = (Rain) \times (Area_{imp}) \times (\% RO_{imp} - \% RO_{Soil})$ 

| Partie State           |          |              |       |            |     |
|------------------------|----------|--------------|-------|------------|-----|
|                        |          |              |       |            |     |
| 2457 F                 |          |              |       | 124<br>184 |     |
|                        |          |              |       |            |     |
|                        |          |              |       |            |     |
| And a state of a state |          |              |       |            |     |
|                        |          |              |       |            |     |
|                        |          |              |       |            |     |
|                        |          |              |       |            |     |
|                        |          |              |       |            |     |
|                        |          |              |       |            |     |
|                        |          |              |       |            |     |
|                        |          |              |       |            |     |
|                        |          |              |       |            |     |
|                        |          |              |       |            |     |
|                        |          |              |       |            |     |
|                        |          | Sa 15        |       |            |     |
|                        |          |              |       |            |     |
|                        |          |              |       |            |     |
|                        | 12       |              |       |            |     |
|                        |          |              |       |            |     |
|                        |          |              |       |            |     |
|                        |          |              |       |            |     |
|                        |          |              |       |            |     |
|                        | Turner & |              |       |            |     |
|                        |          |              |       | 61.7 175   |     |
|                        | 1        |              |       | LO.D.I     |     |
|                        |          | - = h F. \ 4 |       |            |     |
|                        |          |              |       | OUNTY      | E.3 |
|                        |          | -            | FLOOD | ONTROL     |     |
| Itadat                 |          |              |       | 12-21      |     |
|                        |          |              |       |            |     |

(1)

(2)

(3)

(4)

### Percentage of rainfall that produces runoff (%RO) $Delta = (Rain) \times (Area_{imp}) \times (\% RO_{imp} - \% RO_{Soil})$

### Post- development %RO imp

 Percentage of rainfall that produces runoff postdevelopment, %RO imp = 75% for all impervious surfaces.

### Pre-development

%RO soil

- For B soils, %RO soil = 3.9%
- For D soils, %RO soil = 15.8%
- For A or C soil groups or mixed, %RO soil = 10%





### Annual Delta volume from urban watersheds





Current water supply -vs-Capturing Delta volume

FLOOD CONTR





TAMA'S Annual water supply: https://new.azwater.gov/ama/ama-data

# Where open spaces to build retention basins are located?







Annual Delta Volume

Which of the open spaces could store the Delta generated from a 1-inch rainfall event more than once in a year?

Estimate Delta volume that a 1-inch rainfall event could produce in each watershed,

$$1inch \ Delta = (1 \ inch) \times (Area_{imp}) \times (\% RO_{imp} - \% RO_{Soil})$$

Estimate retention volume if the entire open land area is used for the basin,

retention volume =  $6 feet \times open land area$ 

Criteria to select the best open lands to build retention basins,

1inch Delta > median = 28 ac - ft

retention volume > 1inch Delta

 $Times \text{ basin is full} = \frac{Annual Delta}{retention volume} > 1$ 

## Which of the open spaces could retain the delta from a 1-inch rainfall event more than once in a year?

![](_page_11_Picture_1.jpeg)

![](_page_11_Figure_2.jpeg)

### Main Assumptions

![](_page_12_Figure_1.jpeg)

![](_page_12_Picture_2.jpeg)

### In perspective: Massingale & KERP

![](_page_13_Figure_1.jpeg)

### Hypothetical Case: Cost of building a 40 ac-ft retention basin

#### **Estimate For Dashboard Hypothetical Basin**

Date: 02/15/23

\$3.2 million

PIMA COUNT

| Item No | Description                                      | Unit | Quantity | Unit Cost |           | Total cost |              |
|---------|--------------------------------------------------|------|----------|-----------|-----------|------------|--------------|
| 1       | Mobilization                                     | LS   | 1        | \$        | 30,000.00 | \$         | 30,000.00    |
| 2       | Percolation Test                                 | LS   | 2        | \$        | 1,500.00  | \$         | 3,000.00     |
| 3       | Construction survey and layout                   | LS   | 1        | \$        | 5,500.00  | \$         | 5,500.00     |
| 4       | Clearing and grubbing                            | AC   | 7        | \$        | 7,000.00  | \$         | 49,000.00    |
| 5       | Excavate Basin and Haul Off1                     | CY   | 64,520   | \$        | 40.00     | \$         | 2,580,800.00 |
| 6       | Inlet Grouted RipRap (6" w/ welded wire mesh)2   | SY   | 120      | \$        | 775.00    | \$         | 93,000.00    |
| 7       | Concrete inlet structure with apron <sup>2</sup> | SY   | 28       | s         | 2,500.00  | \$         | 70,000.00    |
| 8       | Permitter Post and Cable fence                   | LF   | 2252     | \$        | 35.00     | \$         | 78,820.00    |
| 9       | Access cable with looped end                     | EA   | 2        | \$        | 1,350.00  | \$         | 2,700.00     |
| 10      | Handrail (std detail 105) <sup>2</sup>           | LF   | 152      | \$        | 75.00     | \$         | 11,400.00    |
| 11      | Sidewalk scupper (type 2) <sup>2</sup>           | LF   | 320      | \$        | 625.00    | \$         | 200,000.00   |
| 12      | Hydroseeding                                     | AC   | 7        | \$        | 3,800.00  | \$         | 26,600.00    |
| 13      | Incidental items allowance                       | FA   | 1        | \$        | 10,000.00 | \$         | 10,000.00    |

Total = \$ 3,160,820.00

<sup>1</sup> Assumes that all material generated will need to be hauled off. Part of that assumption is the distance and location that the material would be hauled to which for the purpose of the estimate is a 5 mile haul to Sunset Pit. Creation of berms between basin cells and raising adjacent areas could reduce or eliminate this line item. <sup>2</sup> Assumes 4 inlet structures would be needed for the 40 ac-ft basin.

Please note that depending on the intended use of the basins, whether its infiltration or storage for reuse, additional constructed elements will be required that are not captured in the hypothetical basin cost estimate above. Elements could include multiple dry wells for infiltration or lining, pump and piping for storage and reuse.

Hypothetical Case: Installation of injection wells (dry wells) in a 40 ac-ft retention basin

- supplement and replenish groundwater reserves
- dry wells can go 150-200 feet into the soil until reach a permeable layer
- Estimated cost \$25,000 per unit
- injection wells have reported recovery rates of 0.1 cfs elsewhere in Arizona.
- assuming this recovery rate and the installation of 18 dry wells within the 40 ac-ft retention basin it could take 11 days to drain a full basin.

![](_page_15_Picture_6.jpeg)

**Figure 6**. Schematic representation of the MaxWell Plus Torrent Resources drainage system

![](_page_16_Figure_0.jpeg)

A THE ADDRESS & AN INCOME IN MICHAEL

## Thoughts?

![](_page_17_Picture_1.jpeg)

![](_page_17_Picture_2.jpeg)

FLOOD CONTROL

nearmap