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The breathing of the biosphere using flux towers/eddy 
covariance 
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How do we quantify energy and mass exchange at ecosystem 
scale?

These eddies are largely responsible for moving things (e.g., 
energy, water vapor, carbon dioxide) between the biosphere and 
atmosphere
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Why are we interested in riparian ecosystem functioning? 

Riparian ET is a major, yet often poorly quantified, component of a semi-
arid basin’s water budget

and riparian (i.e., groundwater dependent) ecosystems are unique and 
important ecosystems, particularly, in dryland regions



Groundwater dependent ecosystems are different 
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Charleston mesquite woodland
 



Charleston mesquite woodland
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21 years of eddy covariance data!

1)How have meteorological conditions, water and C fluxes changed 
over the last two decades?

2)What drives the interannual variability of ET and C fluxes? 

Questions -



Where and How?
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Interannual variabilityInterannual Variability – Ecosystem Responses
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1)How have meteorological conditions, water and C fluxes changed 
at this riparian woodland over the last two decades?

2)What drives the interannual variability of ET and C fluxes? 

3)How do the drivers of water and C fluxes vary throughout the 
annual growth cycle?

Questions -
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Annual variation was broken down into the seasonal scale to explain 
lack or presence of annual trends
- ET had positive increases in dormancy (winter) and senescence (fall) and negative trend in 

dry mature phase (foresummer)
- GEP (photosynthesis) increased in all seasons except the dry mature
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What drove variations 
in seasonal fluxes?
 

ET largely explained by water 
drivers (precip, GW use, soil 
moisture)

GEP explained by atmospheric CO2, 
water, light, atmospheric dryness 
(VPD), and antecedent conditions
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Take home points:
1. Groundwater buffers woodland functioning from 21st Century long-term drought
2. Riparian woodland ET exceeds precipitation but is much less than well-watered crops
3. Woodland is a substantial carbon sink. GEP and Reco increased in tandem, greatest 

increases during:
• Dormancy – CO2 effect, Wet Summer – increased soil moisture

4. Access to groundwater decoupled carbon and water fluxes from climate - resistance

Questions?
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